If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-43x+83=0
a = 1; b = -43; c = +83;
Δ = b2-4ac
Δ = -432-4·1·83
Δ = 1517
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-43)-\sqrt{1517}}{2*1}=\frac{43-\sqrt{1517}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-43)+\sqrt{1517}}{2*1}=\frac{43+\sqrt{1517}}{2} $
| 3x-41/2=-161/2 | | 2(3x+1)=x(8) | | 2(3x+1)=x.8 | | 5(2x-1)=-(1-21) | | 3(n-4)=-24 | | 19-4x=27 | | 8y-7=-31 | | 46=4(1.5+2x) | | X=3/x | | u-6=-13 | | 30=20/(0.5+x) | | u+6=14 | | 2x+(2*132)=360 | | 15=p×24 | | 3x+14/3=4 | | 2(2x+4)x=x+16 | | 3x-3=x-1=x+5 | | 4.3x-7.1=14.4 | | 2p+11.4=0.8p+17.4 | | 2x+-3=-2 | | 15c-11c+c-5c=10 | | 2x2=18x=20 | | 56x+2=8 | | 8x+4x=169 | | 8x+64=120+36 | | 9x+17+12x+-6=16 | | 3x+4x=112 | | (35.169-2*x)/5.1=4 | | x2-20x=-34 | | (35.169-2*x)/5.1=6 | | (35.169-2*x)/5.1=5 | | 7=-3c=2 |